& BATH a kR

The use of LCA for the development
of low carbon energy solutions

Dr Marcelle C McManus
Sustainable Energy Research Team
Faculty of Engineering and Design
University of Bath, UK



IIIIIIIIIIII

Outline

- Overview of Life Cycle Assessment
- History of use
- Bloenergy as an example

- Examples of use and associated
uncertainties

- How LCA is changing
- What this means...?
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Trajectory and Drivers in LCA development
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LCA of biomass boller
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Bioethanol production from

wheat grain and wheat straw
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‘BATH Sources of emissions calculated according
to different GHG reporting methodologies
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Where/when to do LCA?

Dispose/
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LCA would make |

most difference
here, although the LCA often done here

data is least (although often re-design stage left out)
certain



BATH Using LCA to examine differing catalytic
conversion processes for converting CO2 into

hydrocarbons at lab scale
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BATH Comparison of oil-body LCA using lab &
projected industrial scale data
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Hetherington et al, (in press)
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Example: data gathering of scale up biofuels

LCA of lab-scale LCA of pilot LCA of
research scale system commercial system

_________________________

LCA results { LCA results J { LCA results J

«  Will pilot/commercial results give the results predicted from lab scale?
» If repeated will we find a predictive method?
« Do we have time for that....?

-
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Patel et al. Energy Environ. Sci., 2012, 5, 8430
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Can impacts relate to TRL and cost?
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Technology maturity

Increased (and linked?) certainty of cost and impact?
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Estimates of ILUC vary

very widely
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&DBATH “Carbon Payback” Estimates are strongly
sensitive to factors not historically

included in LCA

10% productivity increase
. = </<// BAU
Maize
| E—— S
Cassava - I Degraded or Cropland
__—— B Grassland
- — Woody Savanna
Sugarcane = 7
T —— W Degraded Forest
Oil Palm Bl Forest
——— * & * Peatland
Soybean ‘
-
Castor
=
01 10 100 >1,000

- Number of Years for Ecosystem “Carbon Payback” Time [Log Scale]
Modified from
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Impact categories in LCA

studies continue to expand and

! . . : . Social
- become increasingly inclusive.
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Taylor & McManus, 2013
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Changing approach
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Complexities in bioenergy

Various feedstock and conversion technologies
Uncertainty in data along all stages
Complexities in land use/agricultural systems
Uncertainties of how will fit into energy future
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& BATH Bioenergy LCA and policy
shape each other
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Where LCA is heading

Traditional Current/moving towards

— Retrospective — Forward facing
— Used for product and — predictive
process improvement — Policy and scene setting
— Attributional LCA — Consequential LCA
— GHG as proxy for resource use
— Compliance — Indirect effects

— promotion — Social implications
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